Tangle-tree duality: in graphs, matroids and beyond⇤

نویسندگان

  • Reinhard Diestel
  • Sang-il Oum
چکیده

We apply a recent duality theorem for tangles in abstract separation systems to derive tangle-type duality theorems for width-parameters in graphs and matroids. We further derive a duality theorem for the existence of clusters in large data sets. Our applications to graphs include new, tangle-type, duality theorems for tree-width, path-width, and tree-decompositions of small adhesion. Conversely, we show that carving width is dual to edge-tangles. For matroids we obtain a duality theorem for tree-width. Our results can be used to derive short proofs of all the classical duality theorems for width parameters in graph minor theory, such as path-width, tree-width, branch-width and rank-width, as well as of a general brambletype duality theorem of Amini, Mazoit, Nisse, and Thomassé which unifies these classical theorems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unifying duality theorems for width parameters in graphs and matroids II. General duality

We prove a general duality theorem for tangle-like dense objects in combinatorial structures such as graphs and matroids. This paper continues, and assumes familiarity with, the theory developed in [6].

متن کامل

Tangle-tree duality in abstract separation systems

We prove a general width duality theorem for combinatorial structures with well-defined notions of cohesion and separation. These might be graphs and matroids, but can be much more general or quite di↵erent. The theorem asserts a duality between the existence of high cohesiveness somewhere local and a global overall tree structure. We describe cohesive substructures in a unified way in the form...

متن کامل

Duality Theorems for Blocks and Tangles in Graphs

We prove a duality theorem applicable to a a wide range of specialisations, as well as to some generalisations, of tangles in graphs. It generalises the classical tangle duality theorem of Robertson and Seymour, which says that every graph either has a large-order tangle or a certain low-width tree-decomposition witnessing that it cannot have such a tangle. Our result also yields duality theore...

متن کامل

Unifying duality theorems for width parameters in graphs and matroids I. Weak and strong duality

We prove a general duality theorem for width parameters in combinatorial structures such as graphs and matroids. It implies the classical such theorems for path-width, tree-width, branch-width and rank-width, and gives rise to new width parameters with associated duality theorems. The dense substructures witnessing large width are presented in a unified way akin to tangles, as orientations of s...

متن کامل

Structural properties of fuzzy graphs

Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study  connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids  from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017